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Abstract. Adipocyte-derived leptin appears to regulate a number of features defining Alzheimerfls disease (AD) at the molecular
and physiological level. Leptin has been shown to reduce the amount of extracellular amyloid beta, both in cell culture and
animal models, as well as to reduce tau phosphorylation in neuronal cells. Importantly, chronic administration of leptin resulted
in a significant improvement in the cognitive performance of transgenic animal models.
In AD, weight loss often precedes the onset of dementia and the level of circulating leptin is inversely proportional to the
severity of cognitive decline. It is speculated that a deficiency in leptin levels or function may contribute to systemic and CNS
abnormalities leading to disease progression. Furthermore, a leptin deficiency may aggravate insulin-controlled pathways, known
to be aberrant in AD. These observations suggest that a leptin replacement therapy may be beneficial for these patients.
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INTRODUCTION

Leptin is a protein that was originally discovered
as an adipocyte-derived hormone controlling feeding
behavior through receptors in the hypothalamus [1].
Since its discovery, it has been shown that leptin has
other important physiological roles in the control of fat
storage or mobilization, the reproductive system, the
immune system, bone homeostasis, insulin sensitivi-
ty [2–4], and neuronal activity and protection [5]. Lep-
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tin receptors have been identified in peripheral tissues,
and of importance to this review, in neurons in the brain,
including the hippocampus [5–7], which is particularly
vulnerable in Alzheimer’s disease (AD) [8].
While application of leptin agonists can reduce body

weight and glucose levels in obese animals, such
molecules have only met with limited success in clini-
cal trials for obesity and diabetes as monotherapies [9].
However, greater success has recently been reported
from rat and human studies when used in combination
with pramlintide, an analogue of amylin [10]. The lack
of efficacywith leptin monotherapyhas been suggested
to result from the development of leptin resistance, ei-
ther due to the saturation of the transporter responsible
for the movement of leptin from the periphery across
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the blood brain barrier or because of the desensitization
of post-receptor signaling pathways in obese patients.
Nonetheless, because of its pleiotropic nature, leptin or
leptin agonists/antagonists hold promise as therapeu-
tics in a variety of conditions. Leptin directly stim-
ulates bone growth by inducing osteoblasts to make
insulin-like growth factor-I, providing a basis for os-
teoporosis treatments [11]. The role of leptin in inflam-
mation, may lead to therapies in inflammatory bowel
disease, multiple sclerosis, sepsis, and arthritis [12]. In
this review, the involvement of leptin in pathological
pathways relevant to AD is examined. Specifically, in
vitro and in vivo studies have shown leptin to positive-
ly impact amyloid-β (Aβ) homeostasis and tau phos-
phorylation and to improve, following chronic supple-
mentation, the cognitive ability of animal models of
AD. Interestingly, the observations from mechanistic
studies suggest that an upstream component possibly
linked to metabolic pathways and modulated by lep-
tin precedes amyloid plaque and neurofibrillary tangle
(NFT) development. Indeed, evidence is provided to
suggest that neuronal AMP-activated kinase (AMPK)
may fulfill that role.
An abnormalAMPK activity could potentially trans-

late to abnormal lipid levels and membrane compo-
sition in neurons that would affect membrane fluidi-
ty and the physiology of lipid rafts, which accommo-
date many components of the machinery leading to Aβ
production. Leptin has been shown to maintain bal-
anced AMPK activity. Also, AMPK is known to reg-
ulate glycogen synthase kinase-3β (GSK-3β), a cen-
tral tau kinase [13], and leptin, like the AMPK activa-
tor AICAR, can reduce tau phosphorylation at several
sites [14,95]. Taken together, the mechanistic path-
ways that are influenced by leptin and that occur prior
to amyloid deposition or tau phosphorylation, as well as
potential cognitive improvements, highlight the impor-
tance of further development of therapies that increase
leptin availability in the central nervous system (CNS).
These therapies may include leptin supplementation,
leptin receptor activation, or controlling the develop-
ment of leptin resistance, all with the goal of alleviating
AD etiology and pathobiology.

LEPTIN IN OBESITY AND
LEPTIN-DEFICIENCY SYNDROMES

Plasma leptin concentrations are highly correlated
with amount of body fat, with women having higher
concentrations at every level of relative or absolute adi-

posity [15,16]. This gender dimorphism is maintained
even in postmenopausal women, despite a drop in lep-
tin levels (such that levels in premenopausal females>
postmenopausal females > males) [16]. The range of
leptin serum levels in humans range from 0 ng/ml lep-
tin (in congenital leptin deficiency cases) to more than
100 ng/ml, representing morbidly obese cases. Nor-
mally, plasma leptin levels are highest late at night and
lowest in the morning.
Leptin has been extensively used in trials for treat-

ment of obesity, but its relatively low therapeutic index
as amonotherapy, despite an overall well-tolerated pro-
file, limits its use. The rather disappointing results, al-
though associatedwith a clinically significantmoderate
weight loss, are attributed partially to the fact that obese
individuals have hyperleptinemia [15,16] and are gen-
erally resistant to further increments of leptin [17]. The
dosages of leptin utilized in obesity trials were high,
up to 0.4 mg/kg daily. In contrast, in replacement ther-
apies, addressing a number of leptin-deficiency syn-
dromes, clinical efficacy was achieved with doses as
low as 0.02 mg/kg [18]. The most dramatic results us-
ing leptin as a therapy were obtained with rare genetic
cases of obesity with complete leptin deficiency, where
patients responded to leptin replacement therapy with
reduced appetite and food intake as well as body fat
loss [19].
Human testing of leptin as a monotherapy for par-

tially leptin-deficient states has also met with success,
among which are trials for lipodystrophy, increasingly
common in HIV-infected individuals undergoing high-
ly active anti-retroviral therapy. In addition, trials for
hypothalamic amenorrhea, usually reported in women
athletes, and for anorexia nervosa, have shown positive
results. Leptin treatment of patients with these condi-
tions improved metabolic parameters, reduced insulin
resistance, and restored reproductive function respec-
tively [20]. From these trials, only mild side effects
from injection site complications were reported.

LEPTIN (OB), LEPTIN RECEPTOR (OB-R)
AND SIGNALING

The wild-type leptin gene (OB) encodes a 16kDa
polypeptide [1]. The primary amino acid sequence of
leptin and crystallographic data [21] indicate that leptin
adopts a three-dimensional helical structure similar to
that of certain cytokines, such as interleukin-2. The
human leptin receptor (OB-R) [22] is a member of the
class I cytokine receptor (gp130) superfamily [23]. It
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is present as five alternatively spliced isoforms, among
which the expressed OB-Rb is the longest form and
the only one responsible for ligand binding-induced
signaling. Within the brain, the expression of OB-Rb
is highest in the arcuate nucleus and median eminence
of the hypothalamus, but is also abundantly expressed
in the hippocampus, primarily in the dentate gyrus and
CA1 [23,24], areas heavily affected in AD.
Activation of the OB-R triggers the JAK/STAT path-

way to induce gene transcriptional changes via ac-
tivation of Janus tyrosine kinase 2 (JAK2), the sig-
nal transducer and activator 3 (STAT3), and the sup-
pressor of cytokine signaling 3 (SOC3). In additi-
on, leptin can evoke an increased response via activa-
tion of the mitogen-activated protein kinase (MAPK)
and phosphatidylinositol 3-kinase (PI3K) [25,26] path-
ways, which in turn reduce GSK-3 activity and conse-
quently may decrease tau phosphorylation [27].
AMPK may also mediate leptin signaling post OB-

Rb binding [28]. Upon phosphorylation,AMPK can be
activated when cellular AMP/ATP ratio is high leading
to an increase in ATP through a number of pathways
that increase glucose uptake, facilitate lipolysis, and
inhibit lipogenesis [29]. As such, AMPK may act as
an energy management switch, manipulated by leptin
levels.

Blood brain barrier

Although there is some evidence that leptin could be
synthesized within the brain [30], it is believed that the
majority of leptin in the CNS is derived from peripheral
white adipose tissue [31]. Evidence has been provided
for a specific transport system for leptin to cross the
blood brain barrier and enter the brain ofmice, rats, and
humans. The rate of transport can be decreased by high
plasma concentrations of leptin. Thus, reduced entry
of leptin to the brain may be one of the mechanisms of
reduced sensitivity of the leptin pathway in obese indi-
viduals [31]. Nonetheless, accumulating data suggest
that AD patients bear low plasma leptin levels, similar-
ly to other patients with lipodystrophies, making them
good candidates for a leptin replacement therapy.

LEPTIN AND THE NEUROBIOLOGY OF
ALZHEIMER’S DISEASE

Several studies to date have addressed the correlation
between reduced levels of circulating leptin and risk for
AD. In the initial reports, only a limited number of cases

were examined [32,33] but have since been corroborat-
ed with larger patient populations. More interestingly,
a negative correlation between leptin levels and sever-
ity of dementia has been observed [34]. Furthermore,
a large prospective study involving about 3,000 older
persons followedovermore than four years showed that
those with the lowest leptin levels had a greater decline
in their cognitive ability than those with the highest
levels [35,36]. Additionally, a large longitudinal anal-
ysis showed that central obesity in midlife increases
the risk of dementia independent of diabetes and car-
diovascular co-morbidities later in life [37]. These ob-
servations indicate that leptin deficiency is common in
AD and is somehow associated with mid-life obesity,
characterized by leptin “resistance” or “inefficiency”.
A high concentration of leptin receptors in the hip-

pocampus [24] (central for cognition and memory)
underscores the possibility of a multifaceted role for
leptin. Early work by Harvey’s group demonstrated
that leptin was capable of inhibiting hippocampal neu-
rons’ excitability via activation of large conductance
calcium-activated K+ channels [38]. More recently it
was shown that direct injection of leptin into the hip-
pocampus of rodents can improve memory processing
and modulate long term potentiation and synaptic plas-
ticity [39]. Improved memory following leptin admin-
istration was also found in SAMP-8 mice, an acceler-
ated senescence rodent model that develops amyloid
plaques [40].

Amyloid

Although historically the “amyloid cascade” and
“tau and tangle” hypotheses have largely been con-
sidered distinct proposals to explain AD pathobiology,
accumulating data indicate multiple factors, many of
which interconnect between the Aβ and tau molecular
pathways, must come into play to exacerbate the pro-
gression of pathogenesis and cognitive decline. Expo-
sure of neurons to Aβ can promote tau phosphoryla-
tion at sites identical to those found in paired helical
filaments [41,42].
The extracellular accumulation of Aβ is a hallmark

pathological feature of AD and the amount clearly de-
pends on the rates of its production, secretion, and
clearance. Based on our previous data [43], neu-
rons depend on the interaction between presenilin-
1 (PS1) and Cytoplasmic-Linker Protein 170 (CLIP-
170) to generate Aβ. Further to this requirement,
formation of Aβ depends on the assembly of key
proteins in lipid rafts (LRs) [44]. LRs are mem-
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branemicrodomains enriched in cholesterol, glycosph-
ingolipids, and glucosylphosphatidyl-inositol-(GPI)-
tagged proteins, implicated in signal transduction, pro-
tein trafficking, and proteolysis. Within the LRs, it is
believed that the amyloid-β protein precursor (AβPP)
is cleaved by β-secretase (BACE) to generate the inter-
mediate fragment, CAPPβ. The latter is subsequent-
ly processed by γ-secretase, a high molecular weight
multi-protein complex containing PS1 fragments [45].
Once outside the neuron, Aβ can: 1) exert a biolog-
ical activity by binding and activating specific recep-
tors, including the receptor for advanced glycation-end
products (RAGE) [46] and scavenger receptors [47];
2) be removed by mechanisms of endocytosis involv-
ing apolipoprotein E (ApoE) and lipoprotein receptor-
like protein (LRP) or scavenger receptors; and 3) be
degraded by extracellular proteases including insulin-
degrading enzyme and neprilysin [48].
BACE is known to be imbedded inmembraneswhere

it targets AβPP, the precursor of Aβ within lipid rafts.
Our previous in vitro studies have demonstrated that
leptin treatment of neuronal cells reduces the amount
of Aβ secreted into the medium in a time- and dose-
dependent fashion [49]. This was coincident with the
subcellular redistribution of membrane lipids, BACE,
and AβPP, and may be attributed to the lipolytic ac-
tion of leptin. In accord, inhibitors of lipogenesis (i.e.,
TOFA, targeting acetyl coenzyme A carboxylase, and
Cerulinin, targeting fatty-acid synthase) also inhibit-
ed Aβ production, whereas inhibitors of lipolysis (i.e.,
Etomoxir, targeting carnithine palamitoyl transferase-
1) had the opposite effect of leptin, increasing Aβ pro-
duction [49]. Overall, an abnormal accumulation of
lipids in non-adipocytes (neurons specifically) may fa-
vor amyloidogenic pathways, which can be prevented
if sufficient leptin is present.
The uptake of lipoprotein-like particles by neural

cells [50] may be a mechanism by which neurons ac-
quire lipids for membrane remodeling as well as an
avenue that supplies neurons with precursors for other
lipid metabolites and second messengers essential for
function. Finally, the uptake of ApoE/Aβ complex-
es may serve as a mechanism for clearing Aβ from
the brain interstitium. Interestingly, the uptake of the
ApoE/Aβ complexes by neurons appears to be allele
specific and amore efficient uptake of Aβ was achieved
with ApoE3 compared to ApoE4 [49]. Leptin is one
compound that facilitates the uptake of ApoE/Aβ com-
plexes via LRP [49].

Tau phosphorylation

NFTs are intraneuronal aggregates of highly phos-
phorylated tau protein that correlate closely with cog-
nitive loss in AD [51]. Tau is expressed predominant-
ly in axons where it acts to stabilize microtubules, a
function that is regulated by phosphorylation. High-
ly phosphorylated tau shows decreased binding to mi-
crotubules [52,53]. The abnormal phosphorylation of
tau protein leads to disrupted microtubule function, ab-
normal protein trafficking, the formation of NFTs, and
eventual neuronal death. Furthermore, increased phos-
phorylation of tau promotes self-aggregation suggest-
ing that in AD a misregulation of tau phosphorylation
would result in loss of microtubule stability and loss
of function, and aggregation of tau into the paired he-
lical filaments that form NFT [54]. Since NFT den-
sity correlates reasonably well with the clinical scale
of dementia severity [55], and is increased in subjects
with dementia and psychosis [56], therapies blocking
this cascade may have therapeutic potential in AD.
Considerable evidence points to GSK-3β as a pre-

dominant tau kinase in brain. Overexpression of GSK-
3β in animal models induces neurodegeneration [57,
58] and overexpression of GSK-3β in Drosophila in-
duces aggregation of tau into tangles similar to those
of AD [59]. Although both known mammalian GSK-3
isotypes (α and β) can induce paired helical filament-
like phosphorylation of tau, active GSK-3β is co-
expressed in tangle-bearing neurons [60], suggesting
that GSK-3β activity is likely to contribute to tau ab-
normalities in AD.
Recently, it was demonstrated that leptin can phos-

phorylate GSK-3β at Ser-9 and deactivate it, contribut-
ing to the development of mouse cortical neurons [61].
Our laboratory confirmed those observations [95] and
has further demonstrated that leptin treatment can lead
to a reduction in tau phosphorylation through the mod-
ulation of GSK-3beta [95]. Specifically, leptin, in
a time- and concentration-dependent fashion, reduced
the amount of phosphorylation of tau at Ser202, Ser396,
and Ser404 [14], all sites which are phosphorylated in
NFTs [62,63]. A similar activity has been reported for
insulin [64–66]. Most interestingly, as determined by
IC50 values for the Ser396 phosphorylation reaction of
tau, leptin was two orders of magnitude more potent
than insulin [14]. This finding is particularly important
because brain insulin resistance has long been thought
as a possible cause for sporadic AD [67].
Thus leptin is capable of modulating both the pro-

duction of Aβ and phosphorylation of tau [14], the
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building blocks of two pathological hallmarks of AD.
Further, leptin-deficient mice have distinctly different
synaptic profiles from wild-type mice [68], document-
ed by electron microscopy and electrophysiology. Ad-
ministration of leptin rapidly, within six hours, normal-
ized synaptic function, a time well ahead of appetite,
food intake, or weight changes. Loss of synapse func-
tion is indeed another feature related to the cognitive
decline in AD.

METABOLIC PATHWAYS AND ALZHEIMER’S
DISEASE

There is overwhelming evidence underlying the im-
portance of metabolic pathways in the course of AD.
First, from several genetic studies, it has been estab-
lished that carriers of the ApoE4 allele are an order of
magnitude more likely to get AD [69]. Second, the
effect of diet and nutrition on the prevalence of AD has
been documented [70–72] and weight loss is frequently
observed in AD patients prior to the onset of demen-
tia [73,74]. Further, central obesity is associated with
an increased risk for dementia [37]. Third, in cell cul-
ture and animal models it has been demonstrated that
lipids play an important role in amyloidogenic path-
ways [75]. Fourth, the majority of AD patients have
some form of insulin resistance or hyperinsulinemia or
type II diabetes [76].
Thus, it is not surprising that modulators of choles-

terol (i.e., statins) and glucose (i.e., rosiglidazone) [77]
are being developed as potential AD therapeutics. In
fact, cholesterol-reducing therapies such as statins have
been shown to reduce Aβ deposition both in vivo and
in vitro [78]. These are in agreement with epidemi-
ological studies documenting a decreased prevalence
of AD with the use of statins [79]. Interestingly, the
rosiglidazone studies have revealed an important asso-
ciation between the drug’s efficacy as a cognitive en-
hancer in AD patients and their ApoE genotype [80].
As the mechanism of action for leptin appears to be
substantially unique compared to any of the approved
drugs and any of those under development, increasing
the availability of leptin in the CNS holds promise as
an AD therapy (Fig. 1).
AMPK is an important enzyme for regulation of cel-

lular metabolic activity. AMPK acts as a master switch
regulating several intracellular systems including the
cellular uptake of glucose, theβ-oxidation of fatty acids
and the biogenesis of glucose transporter 4 (GLUT4)
and mitochondria [81]. AMPK may be important for

CNS development as supported by the phenotype of
the Drosophila mutant löchrig which has a defective
AMPK [82] and abnormal cholesterol levels that results
in extensive neurodegeneration.
It has been shown that leptin directly activates

AMPK [83] and our laboratory has demonstrated that
the ability of leptin to modulate both tau phospho-
rylation and Aβ production are mediated through
AMPK [14,95]. By utilizing a panel of known in-
hibitors and activators of candidate leptin signaling
molecules, in addition to the employment of recombi-
nant expression and siRNA technology, it became ap-
parent that a number of targets upstream, but not down-
stream, of AMPK could simultaneously modulate Aβ
and tau phosphorylation.
Thus based on the available data, perhaps in AD,

select neuronal populations may have a deficient/
defective AMPK system for one or more of the follow-
ing reasons: low leptin/insulin levels, low leptin/insulin
sensitivity, hyperactive GSK-3β, abnormal cholesterol
and fatty acid membrane composition, and low glucose
uptake. This can then lead to changes in synaptic prop-
erties, an increase in amyloid deposition, an increase in
tau phosphorylation, and finally neuronal death.
Other pharmacological agents known to modulate

AMPK, such as metformin, an insulin-sensitizing an-
tidiabetic drug [28], and 5-aminoimidazole-4-carbox-
amide ribonucleoside, an adenosineanalogue (AICAR)
could in principal at least partially replace the biological
activity of leptin in pathways leading to AD pathology.
To this end, rosiglitazone, a thioglitazone, and PPARγ
agonist (see above), may also act through AMPK [84].

IMMUNE SYSTEM AND ALZHEIMER’S
DISEASE

The immune system has been implicated in the
pathobiology of neurodegeneration in AD. Amyloid
plaques accumulate proteins of the complement system,
eicosanoids and cytokines, which are integral com-
ponents of ongoing inflammatory processes that aug-
ment the harmful effects of Aβ [85]. Important reg-
ulators of the immune system include the cytokines
and chemokines, which are secreted by leukocytes
(B or T cells, normally scarce in the brain) or anti-
gen presenting cells (APC) (microglia, perivascular
macrophages, astrocytes in the brain). In the AD brain,
both pro-inflammatory cytokines (IFN-γ, TNF-α, IL-
12, IL-1, IL-2, IL-15, IL-16, IL-17, IL-18) and anti-
inflammatory cytokines (IL-4, IL-5, IL-10, IL-13, IL-
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Fig. 1. Leptin can modulate AMPKactivity following binding to the leptin receptor. The precise mechanism is currently unknown but there is some
evidence that this may involve STAT3. There is considerable information regarding events downstream of AMPK leading to tau phosphorylation,
which involves modulation of GSK-3β via Akt. In contrast, the cascade from AMPK to Aβ homeostasis is less defined. Activated AMPK may
turn-off the transcriptional factors SREBP1,2, known to regulate lipid metabolism (fatty acid synthase, palmitoyl transferase etc.), previously
shown to be downregulated by leptin [40]. There is some evidence that insulin is also capable of modulating AMPK. In addition to AMPK,
insulin and leptin may share another common target, PI3K, which also regulates GSK-3β through Akt. Activation of Akt by AMPK leads to the
phosphorylation of GSK-3β at Ser-9 which deactivates it. GSK-3β is the major kinase for tau.
Based exclusively on our studies, AMPK is emerging as a central modulator of major pathological pathways in AD. We propose that leptin
deficiency in AD contributes to the downregulation of the AMPK system. This in turn causes increases in Aβ and phosphorylated tau. A lower
AMPK activity may also be associated with a general low metabolic activity within neurons, an overall neuronal “fatigue”. Infusing leptin in
the AD brain may improve the outlook, boosting metabolic pathways and reducing Aβ and phospho-tau. A better understanding of the AMPK
system as it relates to AD pathways can provide more targets for future drug discovery efforts.

14, TGF-β) are expressed [86]. In addition to partici-
pating in immune response, cytokinesmay also directly
affect the processing of AβPP [87].
Leptin has similar structural and functional charac-

teristics to the cytokines [23], sharing post-receptor
pathways and participating in the immune response to
pathogens and infections. Leptin deficiency is associ-
ated with impaired T cell immunity [88] and increased
sensitivity to the lethal effects of bacterial endotoxin
and TNF-α. Importantly, these effects can be reversed
by leptin administration which attenuates inflamma-
tory cytokine and neuroendocrine responses to infec-
tion [89]. Further, in critically ill septic patients, higher
leptin levels are positively correlatedwith survival [90].
Although, previous trials have not reported any inflam-

matory side-effects from leptin treatments, monitoring
of inflammatory markers in leptin trials is important.

BEHAVIORAL STUDIES

Mouse models of AβPP overexpression (Tg2576)
have proven to be valid models for testing these lep-
tin hypotheses. Chronic leptin supplementation to the
Tg2576, using implanted miniosmotic pumps, signif-
icantly reduced brain amyloid levels [49]. From this
study and others [91], leptin is known to cross the blood
brain barrier. However, it is currently unknown how
leptin passage to the CNS in AD patients is affected,
ultimately affecting its bioavailability.
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More recently, studies were conducted using the
CRND8 mice which overexpress an AβPP gene con-
taining the Swedish (K670N and M671L) and Indiana
(V717F) FAD mutations. These mice show an age-
related increase in Aβ production, as well as an ear-
ly onset of plaque deposition in the cortex and hip-
pocampus [92] and develop pathology at a younger age
(15 weeks old) [93] compared to the Tg2576 mouse
(10 months old) [94]. Our data suggest that chronic
leptin supplementation, starting at 4 months of age and
continuing through to post-plaque age for 2months,can
significantly improve the performance of these mice
in cognitive and memory tests (Tezapsidis et al., un-
published results). Leptin treatment was associated, as
determined by pathological examination, with reduced
brain amyloid burden, particulalry in the hippocampus,
known to abundantly express the long isoform of lep-
tin receptor, OB-R [23,24]. Furthermore, biochemical
analysis showed that leptin treatment reduced levels of
solubilized Aβ and phospho-tau in brain, and reduced
levels of plasma Aβ. Significantly, no changes in the
levels of plasma inflammatory markers (CRP, TNF-α,
cortisol) were recorded.

CLINICAL TRIALS FOR ALZHEIMER’S
DISEASE

The preclinical data obtained from our and other lab-
oratories, the ample safety data from leptin human tri-
als, and the epidemiological data, favorably support a
clinical trial for leptin as a novel therapy for AD. How-
ever, we lack adequate evidence of a biological signal
indicative of a therapeutic effect in patients. Some con-
cerns are related to side effects, along with uncertainty
about dosing. A pilot study in patients with AD that
is sufficient in scope to assess the impact of leptin on
biomarkers selected for their relevance to the mecha-
nism of action of leptin and the pathobiology of AD
(i.e., in CSF: Aβ, tau, phospho-tau, leptin; in plasma:
Aβ, leptin, insulin) may be a prudent first step. Such
a pilot trial will also help to clarify tolerability, safe-
ty, and feasibility issues relevant for consideration of a
larger subsequent trial.

CONCLUSION

The mechanistic and animal study data presented,
as well as the ample clinical data using leptin, suggest
that increasing leptin availability is a valid target for a

novel treatment for AD.While the potential side effects
of increased leptin to an already susceptible population
are currently unknown, the intriguing biological activ-
ities of leptin, especially inhibition of Aβ production,
upregulation of Aβ uptake, and inhibition of GSK-3β,
hold promise for long-term therapeutic benefit for AD
patients. Its uniquemode of action in the CNS can pos-
itively sway disease pathways and may be utilized as a
desirable complementation to other strategies. Future
projects involving the evaluation of a number of oth-
er products capable of modulating the AMPK system,
including novel leptin and AICAR products, in com-
bination with various formulations allowing alternative
deliveries could provide further opportunities to widen
the portfolio of products addressing AD.
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